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Abstract

The dual-phase-lagging heat conduction equation is shown to be of one unique solution for a finite region of di-
mension 7 (n = 2) under Dirichlet, Neumann or Robin boundary conditions. The solution is also found to be stable
with respect to initial conditions. The work is of fundamental importance in applying the dual-phase-lagging model for
the microscale heat conduction of high-rate heat flux. © 2002 Published by Elsevier Science Ltd.

1. Introduction

The dual-phase-lagging heat conduction equation
originates from the first law of thermodynamics and the
dual-phase-lagging constitutive relation of heat flux
density [1,2]. It is developed in examining energy trans-
port involving the high-rate heating in which the non-
equilibrium  thermodynamic transition and the
microstructural effect become important associated with
shortening of the response time. The high-rate heating is
developing rapidly due to the advancement of high-
power short-pulse laser technologies [3-7]. In addition to
its application in the ultrafast pulse-laser heating, the
dual-phase-lagging heat conduction equation also arises
in describing and predicting phenomena such as tem-
perature pulses propagating in superfluid liquid helium,
nonhomogeneous lagging response in porous media,
thermal lagging in amorphous materials, and effects of
material defects and thermomechanical coupling [1].
Furthermore, the dual-phase-lagging heat conduction
equation forms a generalized, unified equation with the
classical parabolic heat conduction equation, the hy-
perbolic heat conduction equation, the energy equation
in the phonon scattering model [8,9], and the energy
equation in the phonon-electron interaction model [10-
12] as its special cases [1,2]. This, with the rapid growth
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of microscale heat conduction of high-rate heat flux, has
attracted the recent research effort on dual-phase-lag-
ging heat conduction equations.

Solutions of one-dimensional (1D) heat conduction
under some specific initial and boundary conditions
were developed in [1,13-18]. The thermal oscillation and
resonance described by the dual-phase-lagging heat
conduction equations were examined in [19]. Conditions
and features of thermal resonance, underdamped, criti-
cally damped and overdamped oscillations were ob-
tained and compared with those described by the
classical parabolic heat conduction equation and the
hyperbolic heat conduction equation [19]. Wang and
Zhou [2] developed methods of measuring the phase-lag
of the heat flux and the temperature gradient and ob-
tained analytical solutions for regular 1D, 2D and 3D
heat conduction domains under essentially arbitrary
initial and boundary conditions. Two solution structure
theorems were also developed for dual-phase-lagging
heat conduction equations under linear boundary con-
ditions [2,20]. These theorems express contributions (to
the temperature field) of the initial temperature distri-
bution and the source term by that of the initial time-
rate change of the temperature. They reveal the structure
of the temperature field and considerably simplify the
development of solutions of dual-phase-lagging heat
conduction equations.

On the fundamental side, the dual-phase-lagging heat
conduction equation was shown to be both admissible
within the framework of the second law of the extended
irreversible thermodynamics [1] and well-posed in a
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Nomenclature

h, k nonnegative real constants
S area

T temperature

t time

X position vector

V Volume

Greek symbols

o thermal diffusivity

Q space domain
0Q  boundary of Q
¢, ¥ known functions

7, phase-lag of heat flux vector

Tr phase-lag of temperature gradient
\Y gradient

A Laplacian

v for all

finite 1D region under Dirichlet, Neumann or Robin
boundary conditions [20]. The well-posed problem has
been, however, left unaddressed for the n-dimensional
case with n > 2. Furthermore, the method in [20] cannot
be directly extended to the higher-dimension case. This
stimulates the present work of modifying the method in
[20] to examine the well-posedness of n-dimensional
dual-phase-lagging heat conduction equations. In par-
ticular, we establish the existence, uniqueness and
stability of the solution with respect to initial conditions
for the n-dimensional dual-phase-lagging heat conduc-
tion with n > 2 under homogeneous Dirichlet, Neumann
or Robin boundary conditions.

2. Existence

Consider the initial-boundary value problem of the n-
dimensional (n > 2) dual-phase-lagging heat conduction
equation under homogeneous Dirichlet, Neumann or
Robin boundary conditions. !

| G T .
&T}(X,t)*‘r;q]—;t(.x,t)

. 0 -
_AT(x,t)Jr‘cT&AT(x,t), Q x (0,400), M

k +hT(;71)|aQ =0,

oT(x,1)
“on (0, +00),

T(;70) = (]5(;,[), T,(;,O) = ‘p(;)7 Q.

! For the heat conduction involving heat flux-specified
boundary conditions, it is more convenient to use the dual-
phase-lagging heat conduction equation in terms of the heat
flux q or the heat flux potential ¢ defined by q = V¢. The ¢-
version heat conduction equation has exactly the same structure
as its T-version. The 1D g-version heat conduction equation is
also of the same structure as its 7-version. A mixed formulation
for both q and 7 directly by two coupled energy and
constitutive equations is more general in view of applications
of the dual-phase-lagging model. The readers are referred to [1,
pp. 30-34] for details.

Here ¢ is the time, 7 can be the temperature or one
component of heat flux vector, o is the thermal diffu-
sivity, 77 and 7, are the phase-lags of the temperature
gradient and the heat flux, respectively, x denotes a
point in the space domain Q of n-dimensions with the
boundary 0Q, A the Laplacian, ¢ and y are the known
functions, 07 /0n the normal derivative of T, 7, = 07 /0¢,
T, = 0*T /0, k and h are nonnegative real constants and
satisfy k+ h # 0.

Note that (1) covers the Dirichlet, Neumann and Ro-
bin boundary conditions by different combinations of &
and /. The readers are referred to [1,21] for physical im-
plications and limitations of three boundary conditions.

Assume separation of the variables in the form

T(x,1) = X(X)I(0). 2)
A substitution of (2) into (1) yields

XE) |10 + 21,00 = MG + 201, 0]
which becomes, after dividing by X (x)[I'(¢) + t,I',(¢)], *

—

ST 43T _ AX(x) (3)

MO+ ol x(x)

We have, therefore, the separation equation for the
temporal variable I',(¢)

T, Lu(t) + (1 + atr )T (2) + 0AL(t) = 0, 4)

and the homogeneous system for the spatial variable

—

X(x)

AX(X) +2X(x) =0, x€Q, (5)
kZ—XJth:o, X €0Q, (6)
n

where A is the separation constant.

2 Note that X(x)[I'(¢) + t7I,(r)] cannot be vanished for a
nontrivial solution, see [20].



L. Wang, M. Xu | International Journal of Heat and Mass Transfer 45 (2002) 1165-1171 1167

Integrating Eq. (5) over Q after multiplying X (x)
leads to

/XAXdQH/XZdQ:o (7
Q Q

which becomes, by applying the Green identity to
JoXAX dQ,

/ e d(2Q) - /VX-VXdQ—M/XZdQ:O.
Q Q

on
(8)
By Eq. (6), if £ # 0, we obtain
ol _hy
on |ao k™ oo
Therefore, Eq. (8) becomes
),/XZ dQ:/VX.VXdQJrﬁ X?d(@Q) =0,
Q Q k 0Q
which implies
A=0. 9)

For the case of £ = 0, a similar analysis also leads to Eq.
).

Using the solution of Egs. (4)—(6) available in [2,20]
for various Q, we have a solution of Eq. (1):

T(x,t) = Z "4, €08 fi,,t + B,sin(u,,t)1X, (x),

1 P =
Am:m/gqs(x)x (¥) de

1 (10)
B, = / X)X (x)dQ
Mm& Q l//( )
\ - =
- ¢ (x)X,(x) dR,
o [ oG
where
1+ otriy,
—__ T rm 11
b= - (1
\/40(‘[,1 (14 otp i) .
2% , (12)
[ i, £0,
Em*{l if w, =0, (13)
. sin(u,t) if 0,
&(Mm[) = {t (‘um ) if Zm i_é 0 (14)
and

M, —/ (15)

Here /,, and X,,(x) are the eigenvalues and eigenfunc-
tions of Egs. (5) and (6), respectively. They are Q2-de-
pendent and available in [2] for various Q. Therefore,
Eq. (1) has at least one solution.

3. Inequality

For the uniqueness and stability, we need first to
develop an important inequality for (1). Note that

0
3 (T+1,T)" = 2T + 2, T)(T; + 7, T,)
=20(T + 1,T,)(AT + 17AT,), (16)

in which the heat conduction equation in (1) has
been used. Integrating (16) with respect to x over Q
yields

a(T+qu) dQ
o O

= 20(/(TAT + 17 TAT, + 1, AT + 1,77 T,AT,) dQ.
Q
(17)

By the Green identity,

/TATdQ:/Ta—TdaQ /VT VT dQ,
Ja Jeg Onm

oT,
/TAT,dQ:/T—dOQ /VT VT, dQ,
Q oq On
" ~oT
/T,ATdQ:/ 7,— d(0Q) — /VT, VT dQ,
Q oq  On

aT,
/T,AT,dQ:/T—dOQ /VT, VT, dQ.
Q 0@ On

Also note that,

/VTvVT,dQ:/VT[-VTdQ
Q Q

1[0
_E/Qa(w-vr)dg.

Therefore, Eq. (17) can be rewritten as
/ O (42,1 dQ + a(er Hq)/ 9 (vr-vr)de

or
=2 T— d(0Q) —
a/m On (

T; T
+2zer/ T@ d(@Q)JrZocrq/ T,a—
o On

oo On

20(/VT~VT de
Q
d(0Q)
aT,
+ Zarq‘cr/ T, — d(0Q) — 2at,77 / VT, VT, dQ.
e On Q

(18)

For the case of k # 0, the boundary condition in (1)
becomes
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o) __hyl (19)
n oo k- lae
Substituting Eq. (19) into Eq. (18) and defining
" oh
g(t) = a(tr + 1) / VT -VTdQ+ y (7 +14)
Q
y / 2 d(00) + / (T +7,T)* de, (20)
) Q
yield
og() _ _20h Tzd(GQ)fZa/VT-VTdQ
ot k Jaa Q
- Zarquﬁ/ th d(0Q) — ZMqu/ VT,-VT,dQ
k 0Q Q
(21)

which is negative semi-definite because o, 7, 7,, h and k
are all not negative. Therefore,

g(h)<gln) Vo =r. (22)

The inequality for the case of £ =0 can also be
written in the form of (22). However, the definition of
g(¢) should be

0 :a(rT+rq)/QVT~VTdQ+/Q(T+T,,T,)2 deQ.
(23)

4. Uniqueness

Suppose that T} (x,¢) and T3(x, ) are two solutions of
(1). The difference between them

w(x,t) = T\(x,1) — (X, 1)

must satisfy the following initial-boundary value prob-
lem:

1 0
—w, +T—qw,t =Aw+ 17 —Aw, Qx (0,00),
o o ot

ow 24
ka+hw|ag = 07 ( )

W|t:0 =0, Wt|t:() =0.
For the case of k # 0, an application of (22) to (24)
yields, with 1, =¢> 0 and t, =0,
a(tr + 14) / Vw(x,1) - Vw(x,t) dQ
Q

+ % (tr +14) /EQ w?(x, ) d(0Q)

+ /Q[w(;7 1)+ twi(x,0)] dQ

<atr +1,) / Vw(x,0) - Vw(x,0) dQ
Q

+ % (tr +1,) /m WA(%,0) d(8Q)

+ /Q [w(;7 0) + rqw,(;, 0)]2 dQ

=0. (25)
This requires
Vw(x,t) =0 (26)
and
w(x, 1) + 1w, (x,1) = 0. (27)

Therefore, w is independent of x (Eq. (26)). The general
solution of (27) is thus

w(x, 1) = ce™/m (28)

with ¢ as a constant. Applying the initial condition
w(x,0) = 0 yields

¢c=0. (29)
Therefore,

w(x,t) =0, (30)
ie.,

Ti(%,1) = Th(x,1). (31)

However, T} and 7, are any two solutions of (1) so that
the solution of (1) is unique. Similarly, we can also es-
tablish the uniqueness for the case of £ = 0.

5. Stability

We establish the stability with respect to the initial
conditions in the following stability theorem:

Stability Theorem. If

lp(x)] <, (32)
W (x)| <e, (33)
and

IVo(x)|<e, (34)

the solution T(x, 1) of (1) satisfies
|T(x,1)| < ce. (35)

Here ¢ is a small positive constant, and ¢ is a nonnegative
constant.
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Proof. For the case of £ # 0, (22) yields, for (1) when
t>0and ¢t =0,

h

o(tr + 74) /Q VT -VTdQ +%(rr +1,)

« / T2 d(0Q) + /(T 1,1, dQ

) Q "
<aler ) [ VO a0+ 5 (v [ ¢ aee)
Q k )
+/(¢ +1,0) dQ
Q
h
Lol + 1)V + % (17 + 1) + (1 +1,)°eV
h

= [<fo +%S> (tr +14) + (1 + rq)zV} &

= Mé, (36)
where Egs. (32)—-(34) have been used,

M= (Wﬁ%hs) (er +1,) + (1 +1,)°7, (37)

V' is the volume of @2, and S the area of 0Q. Eq. (36)
implies

a(tr +1,) / |VT|* dQ < Mé, (38)
Q
h
oher +7,) / 2 d(0Q) < M7, (39)
k a0
which are equivalent to
/|VT|2 dQ <M &, (40)
JQ
/ 2 d(0Q) < Mai. (41)
)
Here
M Mk
"t +1,)]  ah(tr +1,)’

Since, for any two square-integrable functions f| and f5,

/Qfl||fz|d9<\//gf12d£2\//gf22d9,
/I/I\Iledaﬁ \// fid asz\// 12d(0Q),

we have

/|VT\ dQs\// VT dQ\// do<V/MVe  (42)
Q Q Q

and

7] d(aQ)g\/ / TZd(aQ)\/ d(0Q) < /M>Se
o 0Q 0Q

(43)

in which (40) and (41) have been used. Eqs. (42) and (43)
can be rewritten as

/Qm(},z) dQ<0 VvQ (44)
and

/a ., n,(x,1) d(0Q) <0 VoQ, (45)
where

(X, 1) = ]vr(}‘,:)‘ - \/EE
m(x, ‘T (x,¢ ‘ - \/Aza

To obtain a local form of Egs. (44) and (45), con-
sider a subregion Q,, of volume Av around point X in
Q at arbitrary time instant 7, and a subsurface 02y, of
area As around point x, on 0Q at arbitrary time instant
7. Let

= 1 -
In, = |1y (x1,8) — Ap / 01 (x, 1) dQa,|, (46)
U Jay,
N 1 =
o= |alis,0) = 5 [ a(5or) d0@ (@7)
S Joa,
Then,
]AL 2 07 (48)
Iz, = 0. (49)
Also,
1 N N
]Av = E o, [’71 (‘xl ; t) - (X, t)} dQAv
1

S A Inax
U Jay, ¥eQp,

['71(;1, t) - ]71(}1 t)] )

[y (x1,6) =y (%, t)]‘ dQy,

= max
XeQy,

1 - =
o= | [ ) = () dogs
S Joqy,

1
<

<o [ max im0 — (¥, 0]| dogs
S JQp, x €0
= max (1202, 2) = ma (%, 1)]
x€0Qy,

which tend to zero as Av — 0 or As — 0. Hence we have

Ir, <0 as Av— 0, (50)
In<0 as As— 0. (51)

To satisty Eqgs. (48)—(51), we have that

1 -
nGe 0 = fim 5o [ om0 a0 (52)
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and

- o1 -
y]z(xz7 ‘c) = ii]’i}o A_s /C:QA3 }’]2()(7 l‘) d@QM, (53)
which yield, after using Eqs. (44) and (45),
m(x,7) <0, (54)
(3, 7) <0, (55)

Since x|, x, and t are arbitrary, we have

m(x,1) <0, (56)
n(x,1) <0, (57)
1e.,

‘VT(}, t)‘ < \/Agb Yeq, (58)
‘T(;,t)‘ < \/A%s, ¥ con. (59)
Therefore, as ¢ — 0,

‘W(;, t)‘ ~0 VxeQ, (60)
and

‘T(;,t)‘ —0 VxeoQ. (61)

Let x be an arbitrary point in Q, x, a point on 0Q.
There exists a point y in Q between x and xy, by the
Lagrange mean-value theorem, such that

T(%,1) = T(, 1) + VT(3,1) - ( —3). (62)
Therefore,
|T(x, 0)] <|T(x0,0)] + [VT(y,0)l[x — xol, (63)

which, with Egs. (60) and (61), leads to
IT(x,0)] — 0, Vx €Q, ase— 0. (64)

Egs. (61) and (64) conclude that there exists a posi-
tive constant ¢ such that

IT(x,0)|<ce VYx € Q and Vx € 0Q. (65)

Therefore, the solution of (1) is stable with respect to the
initial conditions.

6. Concluding remarks

The well-posedness is examined for n-dimensional
dual-phase-lagging heat conduction equations with
n = 2 under Dirichlet, Neumann or Robin boundary
conditions. The method of separation of variables is
used to find a solution. Inequality (22) developed in the

present work is employed to establish its uniqueness and
stability with respect to initial conditions. This is of
fundamental importance for using dual-phase-lagging
heat conduction equations in microscale heat conduc-
tion.
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